Math 105LA Computer Assignment 3
- Implement Mueller’s Method
Algorithm Pseudo-code
INPUT p0, p1, p2; tol, Nmax
OUTPUT p or error message
STEP 1
h1=p1-p0;
h2=p2-p1;
del1=(f(p1)-f(p0))/h1;
del2=(f(p2)-f(p1))/h2;
d=(del2-del1)/(h2+h1);
STEP 2
START FOR
STEP 3
b=del2+h2d; D=(b 2-4f(p2)d) 1/2 ; STEP 4 If then E=b+D; else E=b-D; STEP 5 h= -2f(p2)/E;
p=p2+h;
STEP 6
If |h|<tol
then break;
STEP 7
p0=p1; %prepare for next iteration
p1=p2;
p2=p;
h1=p1-p0;
h2=p2-p1;
del1=(f(p1)-f(p0))/h1;
del2=(f(p2)-f(p1))/h2;
d=(del2-del1)/(h2+h1);
END FOR
STEP 8
If i<Nmax
then
Output(p);
else
Ouput(‘Method failed after Max Num Iterations’)
Output(p) - Use Mueller’s method to solve problem
f(x) = x^3 – 2x^2 – 5
Hint: there are totally three 3 roots. Try different initial guess.