Calculus II Exam

0 comments

Directions: Show all work to receive full credit.
Name:

  1. Solve the following integrals.
    (a) R
    x
    (2x+1)3 dx
    1
    4
    (
    1
    2(2x+1)2 −
    1
    2x+1 )
    (b) R
    x cos2
    (x) dx
    x
    2
    (x +
    sin(2x)
    2
    ) −
    1
    2
    (
    x
    2
    2 −
    cos(2x)
    4
    )
    (c) R ln(√
    x)
    x
    dx
    1
    4
    (ln(x))2
    (d) R
    x sin(x) cos(x) dx
    1
    2
    (−
    x
    2
    cos(2x) + 1
    4
    sin(2x))
    Calculus II Exam 02 Review Page 2 of 5
    (e) R
    1
    (x2−1)2 dx
    − ln | √ x
    x2−1

  • 1
    x2−1
    |
    (f) R
    x

    x − 3 dx
    2
    5
    (x − 3)5/2 + 2(x − 3)3/2 + C
    (g) R
    x
    2
    ln(x) dx
    x
    3
    3
    ln(x) −
    1
    9
    x
    3 + C
    (h) R √
    1+x2
    x
    dx
    ln |

    1+x2
    x −
    1
    x
    | +

    x
    2 + 1 + C
    Cont.
    Calculus II Exam 02 Review Page 3 of 5
    (i) R
    e
    x
    1+e
    x dx
    ln(e
    x+1) Think about why there is no absolute value bars
    (j) R
    sin2
    (x) cos2
    (x) dx
    1
    8
    (x −
    sin(4x)
    4
    ) + C
    (k) R
    x √
    2+1
    x2+2x+2 dx (Note: This took me almost an entire page. Not Mandatory.)
    (

    (x+1)2+1)(x+1)+3 ln |

    (x2+1)2+1+(x+1)|
    2 −2
    p
    (x + 1)2 + 1
    (l) R
    x−4
    x2−5x+6 dx
    − ln |x − 3| + 2 ln |x − 2| + C
    Cont.
    Calculus II Exam 02 Review Page 4 of 5
    (m) R
    tan2
    (x) sec4
    (x) dx
    tan5
    (x)
    5 +
    tan3
    (x)
    3 + C
    (n) R ln(√
    x)

    x
    dx
    2(√
    x ln(√
    x) −

    x) + C
    (o) R
    arctan(x) dx
    x arctan(x)−
    1
    2
    ln(1+x
    2
    )+C Why not absolute value?
    (p) R
    sin3
    (x) cos2
    (x) dx
    −(
    cos3
    (x)
    3 −
    cos5
    (x)
    5
    ) + C
    Cont.
    Calculus II Exam 02 Review Page 5 of 5
  1. Use Simpson’s rule to estimate the integral. R 2
    0
    x
    2
    x2+1 dx where n = 8
    Approximately: .8928598757
  2. Use the Trapazoid rule to estimate the integral. R 3
    1
    sin(x)
    x
    dx where n = 4
    Approximately: .90164486
  3. Determine the number of subintervals are needed to estimate the integral R 2
    0
    xex dx accurate to within
    0.001 units using Simpson’s rule.
    n ≥ 10
    The End.

About the Author

Follow me


{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}