1. Write an equation in standard form of the parabola that has the same shape as the graph of f(x) = 2x2, but with the given point as the vertex (5, 3).
|
A. f(x) = (2x – 4) + 4 |
|
|
B. f(x) = 2(2x + 8) + 3 |
|
|
C. f(x) = 2(x – 5)2 + 3 |
|
|
D. f(x) = 2(x + 3)2 + 3 |
|
|
2 of 20 |
5.0 Points |
Find the coordinates of the vertex for the parabola defined by the given quadratic function.
f(x) = 2(x – 3)2 + 1
|
A. (3, 1) |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
B. (7, 2) |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
C. (6, 5) |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
D. (2, 1)
Find the vertical asymptotes, if any, and the values of x corresponding to holes, if any, of the graph of the following rational function.
g(x) = x + 3/x(x + 4)
“Y varies directly as the nth power of x” can be modeled by the equation:
40 times a number added to the negative square of that number can be expressed as:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solve the following formula for the specified variable:
V = 1/3 lwh for h
x varies jointly as y and z
|
A. x = kz; y = x/k
|
|
|
B. x = kyz; y = x/kz
|
|
|
C. x = kzy; y = x/z
|
|
|
D. x = ky/z; y = x/zk
|
|
A. P(x) = x + 7x.
|
|
|
B.P(x) = x2 – 8x.
|
|
|
C. P(x) = x – x.
|
|
|
P(x) = x2+ 10x.
|
f(x) = x4 – 9x2
|
A. x = 0, x = 3, x = -3; f(x) crosses the x-axis at -3 and 3; f(x) touches the x-axis at 0.
|
|
|
B. x = 1, x = 2, x = 3; f(x) crosses the x-axis at 2 and 3; f(x) crosses the x-axis at 0.
|
|
|
C. x = 0, x = -3, x = 5; f(x) touches the x-axis at -3 and 5; f(x) touches the x-axis at 0.
|
|
|
D. x = 1, x = 2, x = -4; f(x) crosses the x-axis at 2 and -4; f(x) touches the x-axis at 0.
|
f(x) = x + 7/x2 + 49
|
A. All real numbers < 69
|
|
|
B. All real numbers > 210
|
|
|
C. All real numbers ≤ 77
|
|
|
D. All real numbers
|
Minimum = 0 at x = 11
|
A. f(x) = 6(x – 9)
|
|
|
B. f(x) = 3(x – 11)2
|
|
|
C. f(x) = 4(x + 10)
|
|
|
D. f(x) = 3(x2 – 15)2
|
3x2 + 10x – 8 ≤ 0
|
A. [6, 1/3]
|
|
|
B. [-4, 2/3]
|
|
|
C. [-9, 4/5]
|
|
|
D. [8, 2/7]
|
f(x) = -2(x + 1)2 + 5
|
A. (-1, 5)
|
|
|
B. (2, 10)
|
|
|
C. (1, 10)
|
|
|
D. (-3, 7)
|
f(x) = -2x4 + 4x3
|
A. x = 1, x = 0; f(x) touches the x-axis at 1 and 0
|
|
|
B. x = -1, x = 3; f(x) crosses the x-axis at -1 and 3
|
|
|
C. x = 0, x = 2; f(x) crosses the x-axis at 0 and 2
|
|
|
D. x = 4, x = -3; f(x) crosses the x-axis at 4 and -3
|
f(x) = 5x/x – 4
|
A. {x │x ≠ 3}
|
|
|
B. {x │x = 5}
|
|
|
C. {x │x = 2}
|
|
|
D. {x │x ≠ 4}
|
|
A. y = 3x + 5.
|
|
|
B. y = 6x + 7.
|
|
|
C. y = 2x – 5.
|
|
|
D. y = 3x2 + 7.
|
|
A. 80 + x.
|
|
|
B. 20 – x.
|
|
|
C. 40 + 4x.
|
|
|
D. 40 – x.
|
f(x) = 2x4 – 4x2 + 1; between -1 and 0
|
A. f(-1) = -0; f(0) = 2
|
|
|
B. f(-1) = -1; f(0) = 1
|
|
|
C. f(-1) = -2; f(0) = 0
|
|
|
D. f(-1) = -5; f(0) = -3
|
9x2 – 6x + 1 < 0
|
A. (-∞, -3)
|
|
|
B. (-1, ∞)
|
|
|
C. [2, 4)
|
|
|
D. Ø
|
f(x) = x3 – x – 1; between 1 and 2
|
A. f(1) = -1; f(2) = 5
|
|
|
B. f(1) = -3; f(2) = 7
|
|
|
C. f(1) = -1; f(2) = 3
|
|
|
D. f(1) = 2; f(2) = 7
|
f(x) = ln (x – 2)2
|
A. (∞, 2) ∪ (-2, -∞)
|
|
|
B. (-∞, 2) ∪ (2, ∞)
|
|
|
C. (-∞, 1) ∪ (3, ∞)
|
|
|
D. (2, -∞) ∪ (2, ∞)
|
ex = 5.7
|
A. {ln 5.7}; ≈1.74
|
|
|
B. {ln 8.7}; ≈3.74
|
|
|
C. {ln 6.9}; ≈2.49
|
|
|
D. {ln 8.9}; ≈3.97
|
Log7 √7
|
A. 1/4
|
|
|
B. 3/5
|
|
|
C. 1/2
|
|
|
D. 2/7
|
2-4 = 1/16
|
A. Log4 1/16 = 64
|
|
|
B. Log2 1/24 = -4
|
|
|
C. Log2 1/16 = -4
|
|
|
D. Log4 1/16 = 54
|
4 = log2 16
|
A. 2 log4 = 16
|
|
|
B. 22 = 4
|
|
|
C. 44 = 256
|
|
|
D. 24 = 16
|
|
A. 10 grams after 10 seconds; 6 grams after 20 seconds
|
|
|
B. 12 grams after 10 seconds; 7 grams after 20 seconds
|
|
|
C. 4 grams after 10 seconds; 1 gram after 20 seconds
|
|
|
D. 8 grams after 10 seconds; 4 grams after 20 seconds
|
logb (x2y)
|
A. 2 logy x + logx y
|
|
|
B. 2 logb x + logb y
|
|
|
C. logx – logb y
|
|
|
D. logb x – logx y
|
ex+1 = 1/e
|
A. {-3}
|
|
|
B. {-2}
|
|
|
C. {4}
|
|
|
D. {12}
|
log x + 3 log y
|
A. log (xy)
|
|
|
B. log (xy3)
|
|
|
C. log (xy2)
|
|
|
D. logy (xy)3
|
e-0.95
|
A. .483
|
|
|
B. 1.287
|
|
|
C. .597
|
|
|
D. .387
|
|
A. A0 = A0ekt; ln = ekt; ln 2 = ln ekt; ln 2 = kt; ln 2/k = t
|
|
|
B. 2A0 = A0e; 2= ekt; ln = ln ekt; ln 2 = kt; ln 2/k = t
|
|
|
C. 2A0 = A0ekt; 2= ekt; ln 2 = ln ekt; ln 2 = kt; ln 2/k = t
|
|
|
D. 2A0 = A0ekt; 2 = ekt; ln 1 = ln ekt; ln 2 = kt; ln 2/k = toe
|
2 log x = log 25
|
A. {12}
|
|
|
B. {5}
|
|
|
C. {-3}
|
|
|
D. {25}
|
31-x = 1/27
|
A. {2}
|
|
|
B. {-7}
|
|
|
C. {4}
|
|
|
D. {3}
|
f(x) = log (2 – x)
|
A. (∞, 4)
|
|
|
B. (∞, -12)
|
|
|
C. (-∞, 2)
|
|
|
D. (-∞, -3)
|
Logb (√xy3 / z3)
|
A. 1/2 logb x – 6 logb y + 3 logb z
|
|
|
B. 1/2 logb x – 9 logb y – 3 logb z
|
|
|
C. 1/2 logb x + 3 logb y + 6 logb z
|
|
|
D. 1/2 logb x + 3 logb y – 3 logb z
|
32x + 3x – 2 = 0
|
A. {1}
|
|
|
B. {-2}
|
|
|
C. {5}
|
|
|
D. {0}
|
|
A. A = 20,000(1 + (0.06/4))4t; A = 10,000(1 + (0.044/14))12t
|
|
|
B. A = 15,000(1 + (0.07/4))4t; A = 10,000(1 + (0.025/12))12t
|
|
|
C. A = 10,000(1 + (0.05/4))4t; A = 10,000(1 + (0.045/12))12t
|
|
|
D. A = 25,000(1 + (0.05/4))4t; A = 10,000(1 + (0.032/14))12t
|
|
A. bx; (∞, -∞); (1, ∞)
|
|
|
B. bx; (-∞, -∞); (2, ∞)
|
|
|
C. bx; (-∞, ∞); (0, ∞)
|
|
|
D. bx; (-∞, -∞); (-1, ∞)
|
| Write the following equation in its equivalent exponential form. log6 216 = y
|
5 = logb 32
|
A. b5 = 32
|
|
|
B. y5 = 32
|
|
|
C. Blog5 = 32
|
|
|
D. Logb = 32
|
x5 + 2/x2 – 1
|
A. x2 + x – 1/2(x + 1) + 4/2(x – 1)
|
|
|
B. x3 + x – 1/2(x + 1) + 3/2(x – 1)
|
|
|
C. x3 + x – 1/6(x – 2) + 3/2(x + 1)
|
|
|
D. x2 + x – 1/2(x + 1) + 4/2(x – 1)
|
| x + y = 1 x2 + xy – y2 = -5 |
|
A. {(4, -3), (-1, 2)}
|
|
|
B. {(2, -3), (-1, 6)}
|
|
|
C. {(-4, -3), (-1, 3)}
|
|
|
D. {(2, -3), (-1, -2)}
|
Let x = the number of rear-projection televisions manufactured in a month and let y = the number of plasma televisions manufactured in a month. Write the objective function that models the total monthly profit.
|
A. z = 200x + 125y
|
|
|
B. z = 125x + 200y
|
|
|
C. z = 130x + 225y
|
|
|
D. z = -125x + 200y
|
{x + 3y = 8
{y = 2x – 9
|
A. {(5, 1)}
|
|
|
B. {(4, 3)}
|
|
|
C. {(7, 2)}
|
|
|
D. {(4, 3)}
|
{4x + 3y = 15
{2x – 5y = 1
|
A. {(4, 0)}
|
|
|
B. {(2, 1)}
|
|
|
C. {(6, 1)}
|
|
|
D. {(3, 1)}
|
If a child averages 50 pounds and an adult 150 pounds, write an inequality that describes when x children and y adults will cause the elevator to be overloaded.
|
A. 50x + 150y > 2000
|
|
|
B. 100x + 150y > 1000
|
|
|
C. 70x + 250y > 2000
|
|
|
D. 55x + 150y > 3000
|
(-1, -4), (1, -2), (2, 5)
|
A. y = 2x2 + x – 6
|
|
|
B. y = 2x2 + 2x – 4
|
|
|
C. y = 2x2 + 2x + 3
|
|
|
D. y = 2x2 + x – 5
|
x + 4/x2(x + 4)
|
A. 1/3x + 1/x2 – x + 5/4(x2 + 4)
|
|
|
B. 1/5x + 1/x2 – x + 4/4(x2 + 6)
|
|
|
C. 1/4x + 1/x2 – x + 4/4(x2 + 4)
|
|
|
D. 1/3x + 1/x2 – x + 3/4(x2 + 5)
|
(-1, 6), (1, 4), (2, 9)
|
A. y = 2x2 – x + 3
|
|
|
B. y = 2x2 + x2 + 9
|
|
|
C. y = 3x2 – x – 4
|
|
|
D. y = 2x2 + 2x + 4
|
| 3(2x+y) + 5z = -1 2(x – 3y + 4z) = -9 4(1 + x) = -3(z – 3y) |
|
A. {(1, 1/3, 0)}
|
|
|
B. {(1/4, 1/3, -2)}
|
|
|
C. {(1/3, 1/5, -1)}
|
|
|
D. {(1/2, 1/3, -1)}
|
Write a system of inequalities that models the following conditions:
You want to stay at least 5 nights. At least one night should be spent at a large resort. Large resorts average $200 per night and small inns average $100 per night. Your budget permits no more than $700 for lodging.
|
A.
|
|||
|
B.
|
|||
|
C.
|
|||
|
D.
|
| 2x + 4y + 3z = 2 x + 2y – z = 0 4x + y – z = 6 |
|
A. {(-3, 2, 6)}
|
|
|
B. {(4, 8, -3)}
|
|
|
C. {(3, 1, 5)}
|
|
|
D. {(1, 4, -1)}
|
| x = y + 4 3x + 7y = -18 |
|
A. {(2, -1)}
|
|
|
B. {(1, 4)}
|
|
|
C. {(2, -5)}
|
|
|
D. {(1, -3)}
|
4/2x2 – 5x – 3
|
A. 4/6(x – 2) – 8/7(4x + 1)
|
|
|
B. 4/7(x – 3) – 8/7(2x + 1)
|
|
|
C. 4/7(x – 2) – 8/7(3x + 1)
|
|
|
D. 4/6(x – 2) – 8/7(3x + 1)
|
| x2 + 4y2 = 20 x + 2y = 6 |
|
A. {(5, 2), (-4, 1)}
|
|
|
B. {(4, 2), (3, 1)}
|
|
|
C. {(2, 2), (4, 1)}
|
|
|
D. {(6, 2), (7, 1)}
|
| x2 + 4y2 = 20 x + 2y = 6 |
|
A. {(5, 2), (-4, 1)}
|
|
|
B. {(4, 2), (3, 1)}
|
|
|
C. {(2, 2), (4, 1)}
|
|
|
D. {(6, 2), (7, 1)}
|
1/x2 – c2 (c ≠ 0)
|
A. 1/4c/x – c – 1/2c/x + c
|
|
|
B. 1/2c/x – c – 1/2c/x + c
|
|
|
C. 1/3c/x – c – 1/2c/x + c
|
|
|
D. 1/2c/x – c – 1/3c/x + c
|
| x2 – 4y2 = -7 3x2 + y2 = 31 |
|
A. {(2, 2), (3, -2), (-1, 2), (-4, -2)}
|
|
|
B. {(7, 2), (3, -2), (-4, 2), (-3, -1)}
|
|
|
C. {(4, 2), (3, -2), (-5, 2), (-2, -2)}
|
|
|
D. {(3, 2), (3, -2), (-3, 2), (-3, -2)}
|
| y2 = x2 – 9 2y = x – 3 |
|
A. {(-6, -4), (2, 0)}
|
|
|
B. {(-4, -4), (1, 0)}
|
|
|
C. {(-3, -4), (2, 0)}
|
|
|
D. {(-5, -4), (3, 0)}
|
ax +b/(x – c)2 (c ≠ 0)
|
A. a/a – c +ac + b/(x – c)2
|
|
|
B. a/b – c +ac + b/(x – c)
|
|
|
C. a/a – b +ac + c/(x – c)2
|
|
|
D. a/a – b +ac + b/(x – c)
|
|


0 comments